Tissue plasminogen activator binding to the annexin II tail domain. Direct modulation by homocysteine.

نویسندگان

  • K A Hajjar
  • L Mauri
  • A T Jacovina
  • F Zhong
  • U A Mirza
  • J C Padovan
  • B T Chait
چکیده

Tissue plasminogen activator binds to endothelial cells via the calcium-regulated phospholipid-binding protein annexin II, an interaction that is inhibited by the prothrombotic amino acid homocysteine. We sought to identify the tissue plasminogen activator binding domain of annexin II and to determine the mechanism of its modulation by homocysteine. Tissue plasminogen activator binding to immobilized annexin II was inhibited by intact fluid phase annexin II but not by its "core" fragment (residues 25-339). Two overlapping "tail" peptides specifically blocked 65-75% of binding. Localization of the tissue plasminogen activator binding domain was confirmed upon specific inhibition by the hexapeptide LCKLSL (residues 7-12). Expressed C9G annexin II protein failed to support tissue plasminogen activator binding, while binding to C133G, C262G, and C335G was equivalent to that of wild type annexin II. Upon exposure to homocysteine, annexin II underwent a 135 +/- 4-Da increase in mass localizing specifically to Cys9 and a 60-66% loss in tissue plasminogen activator-binding capacity (I50 = 11 microM). Upon treatment of cultured endothelial cells with [35S]homocysteine, the dithiothreitol-sensitive label was recovered by immunoprecipitation with anti-annexin II IgG. These data provide a potential mechanism for the prothrombotic effect of homocysteine by demonstrating direct blockade of the tissue plasminogen activator binding domain of annexin II.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages.

Monocytes and macrophages participate in a wide variety of host defense mechanisms. Annexin II, a fibrinolytic receptor, binds plasminogen and tissue plasminogen activator (t-PA) independently at the cell surface, thereby enhancing the catalytic efficiency of plasmin production. We demonstrated previously that annexin II on the surface of both cultured monocytoid cells and monocyte-derived macr...

متن کامل

Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II.

Microglia are the immunocompetent cells of the CNS, and their activation is thought to play an important neurotoxic role in many diseases modeled by glutamate-induced excitotoxicity. One molecule whose expression is upregulated after excitotoxic injury is tissue plasminogen activator (tPA), a serine protease with dual roles in the CNS. The catalytic activity of tPA, which converts plasminogen i...

متن کامل

Recombinant annexin II modulates impaired fibrinolytic activity in vitro and in rat carotid artery.

Fibrinolytic activity has been reported to be decreased in atherosclerosis. Recently, annexin II was identified as a coreceptor on endothelial cells for plasminogen and tissue plasminogen activator. In this study, we examined whether recombinant annexin II (rAN II) protein can modulate fibrinolytic activity on vascular endothelium in vitro and in vivo. The effect of rAN II on human umbilical ve...

متن کامل

Methionine-induced hyperhomocysteinemia reverts fibrinolytic pathway activation in a murine model of acute promyelocytic leukemia.

Increased fibrinolysis is an important component of acute promyelocytic leukemia (APL) bleeding diathesis. APL blasts overexpress annexin II (ANXII), a receptor for tissue plasminogen activator (tPA), and plasminogen, thereby increasing plasmin generation. Previous studies suggested that ANXII plays a pivotal role in APL coagulopathy. ANXII binding to tPA can be inhibited by homocysteine and hy...

متن کامل

Homocysteine-mediated thrombosis and angiostasis in vascular pathobiology.

The mechanisms by which homocysteine contributes to atherothrombosis are complex and their in vivo relevance uncertain. In this issue of the JCI, Jacovina and colleagues report a unique in vivo mechanism by which homocysteine may contribute to vascular disease (see the related article beginning on page 3384). This group had previously reported that homocysteine impairs endothelial cell surface ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 16  شماره 

صفحات  -

تاریخ انتشار 1998